ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025

Owner of the declaration
Program holder and publisher
Declaration number
Issue date

Scandinavian Business Seating AS The Norwegian EPD Foundation NEPD閚3Í 閏0J岜N 2Î 內 閏0FÍ 2Î 內 閏020

HÅG SoFi

with high back and aluminium armrests with TPU tops

1

Scandinavian Business Seating AS

Manufacturer

Valid to

General information

Product

HÅG SoFi with high back and aluminium armrests with TPU tops

General Information

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo

Phone: +47230882J2 e-mail: post@epd-norge.no

Declaration number:

NEPDË3Í Ë0JËN

This declaration is based on Product Category Rules:

PCR for Seating Solution, NPCR 003 extended version 2013, in accordance with recommendations by the Norwegian EPD Foundation.

Declared unit:

One office chair: HÅG SoFi

Declared unit with option:

Option:

High back

Aluminium armrest with TPU tops

Functional unit:

Production of one seating solution provided and maintained for a period of 15 years.

This EPD has been worked out by:

The declaration has been developed using Furniture EPD Tool Version 1.1.2, Approval: NEPDT04 Company specific data collected and registered by:

Laura Fouilland

Company specific data audited by:

Carl Peter Aaser

Verification:

Independent verification of data, other environmental information and EPD has been carried out in accordance with ISO14024, 8.1.3. and 8.1.4.

externally

Mie Vold, Senior Research Scientist (Independent verifier approved by EPD Norway)

Owner of the declaration:

Scandinavian Business Seating AS Contact person:Laura Fouilland

Phone: + 47 40 41 56 13

E-mail: laura.fouilland@sbseating.com

Manufacturer

Scandinavian Business Seating AS

Place of production:

Sundveien 7374 Røros, Norway

Management system:

ISO 14001, Certificate No.151496-2014-AE-NOR-NA From the accredited unit: DNV Certification As, Norway. ISO 9001, Certificate No.151495-2014-AQ-NOR-NA From the accredited unit: DNV Certification As, Norway.

Org. No:

No 928 902 749

Issue date:

2Î BÎ B20FÍ

Valid to:

2Î EDÎ E2020

Comparability:

EPDs from programmes other than the Norwegian EPD Foundation may not be comparable

Year of study:

2015

Approved

Dagfinn Malnes
Managing Director of EPD-Norway

Key environmental indicators	Unit	Cradle to Gate A1-A3
Global warming	kg CO ₂	92
Total energy use	MJ	1967
Amount of recycled materials	%	45%

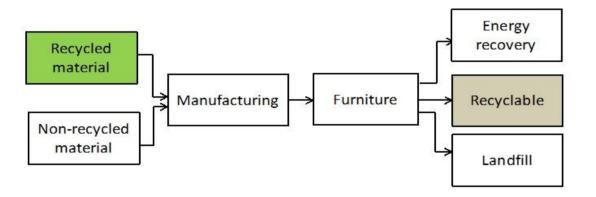
Product

Product Description and Application

HÅG SoFi is a unique task chair. It collects and perfects all of the best design features representative of the HÅG brand. A HÅG chair will forever change your way of sitting. At its core our unique HÅG inBalance®, intuitively keeps you in balanced and continuous motion (BalancedMovementMechanism™), without you having to think about it.

In this declaration, HÅG Sofi is studied in its high back version with aluminium armrests with TPU tops.

Technical Data


Total Weight: 23,1kg EN-1335 approved Greenguard and Möbelfakta certified **Market**

Worldwide

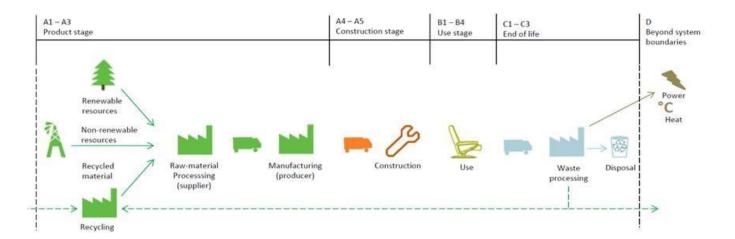
Reference Service Life

15 years

Materials	kg	%
Aluminium	8,8	38%
Steel	5,0	22%
Zinc	1,3	5%
Plastic	6,4	28%
Polyurethane (PUR foam)	1,3	6%
Textiles	0,3	1%
Total product	23,1	100%
Packaging	3,3	
Total product with packaging	26,4	

Materials	Recycled	Recycled amount	Recycled materials	Recyclable	Recyclable amount	Recyclable materials
Unit	%	kg	%	%	kg	%
Aluminium	88%	7,66	29%	100%	8,8	33%
Steel	28%	1,4	5%	100%	5,0	19%
Zinc	8%	0,1	0%	100%	1,3	5%
Plastic	0%	0,0	0%	100%	6,4	24%
Polyurethane (PUR foam)	0%	0,0	0%	0%	0,0	0%
Textiles	100%	0,3	1%	100%	0,3	1%
Packaging (cardboard)	76%	2,5	10%	100%	3,3	13%
Total product		12,0	45%		25,1	95%

Product manufactured from 45% recycled material (packaging included) At end of life product contains 95% recyclable material


LCA: Calculation rules

Declared unit:

Production of one seating solution provided and maintained for a period of 15 years.

System boundary:

Life cycle stages included are described in figure and through the corresponding letter and number designations in the declaration (see figure below)

Data quality:

Specific manufacturing data from 2014 are used. Data from Ecoinvent 3.0.1. and Østfoldforskning databases are used as the basis for raw materials and energy carrier production. See [6].

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances

Allocation:

Where virgin materials are used, emissions and energy consumption connected with extraction and production are included.

Where recycled materials are used in the product, emissions and energy consumption related to the recycling process are included.

Emissions from incineration are allocated to the product system that uses the recovered energy.

Emissions from incineration of waste are allocated to the product system that uses the recovered energy.

LCA: Scenarios and additional technical information

Transportation to an average customer in Copenhagen is 1000 km (A4: average European lorry > 32 tonnes)

The use stage is represented by a scenario and includes vacuum cleaning of textile once a month. The PCR does not provide detailed guidelines for what should be included in the use stage. In the end of life stage, the transport distance for waste to waste processing is 72 km (C1). The reuse, recovery and recycling stage is beyond the system boundaries (D). It is assumed that the solution is dismantled and the materials recycled or combusted according to the general Norwegian treatment of industrial waste (see the table below). The transport distance to reuse, recovery or recycling is varying for each material, but the average distance is 373 km. The vehicles used and associated data are described in detail in [5].

	Material recovery	Energy recovery	Disposal
Aluminium	70,1 %	0,0 %	30 %
Steel	70,1 %	0,0 %	30 %
Plastic	64,3 %	30,8 %	5 %
Cardboard	94,5 %	5,5 %	0 %

D

LCA: Results

The following information describe the scenaries in the different modules of the EPD.

MNR

System boundaries (X=included, MND=modul not declared, MNR=modul not relevant) Beyond the Construction stage Use stage End of life Product stage system boundaries materials Manufacturing Maintenance Replacement Operational Construction energy use Processing recovery-recycling potential Fransport Fransport **Transpor** Disposal Repair Waste Raw A5 В3 B4 A1 A2 A3 A4 В1 B2 C1 C2 C3

MNR

MNR

MNR

C1-C3	D
21,8	-14,9
INA	-4,3E-07
INA	-1,4E-02
INA	-1,0E-02
INA	-4,8E-02
INA	-2,9E-05
INA	-356,6
	INA INA INA INA

Some processes use Ecoinvent 3.0.1. and thus data on renewable resources is omitted. The true ADPM, RPEE, RPEM and TPE may be higher than indicated. This issue will be addressed in a new version of Ecoinvent 3, data from which was not available when this declaration was prepared.

GWP Global warming potential (kg CO2-eqv.); ODP Depletion potential of the stratospheric ozone layer (kg CFC11-eqv.); POCP Formation potential of tropospheric photochemical oxidants (kg C2H4-eqv.); AP Acidification potential of land and water (kg SO2-eqv.); EP Eutrophication potential (kg PO4-3-eqv.); ADPM Abiotic depletion potential for non fossil resources (kg Sb -eqv.); ADPE Abiotic depletion potential for fossil resources (MJ);

Resource use (INA=Indicator Not Accessible)											
Parameter	A1	A2	A3	A1-A3	A4	B1	C1	C2	C3	C1-C3	D
RPEE*	8,8	0,0	2,3E-04	8,8	0,0	9,3E-02	INA	INA	INA	INA	-2,4
RPEM*	35,9	0,2	4,3E-05	36,1	0,2	0,0	INA	INA	INA	INA	-6,1
TPE*	44,7	0,2	2,7E-04	44,9	0,2	9,3E-02	INA	INA	INA	INA	-8,6
NRPE	1929,3	39,8	4,7E-02	1969,1	45,1	7,9E-02	INA	INA	INA	INA	-351,9
NRPM	345,1	0,0	1,7E-02	345,1	0,0	0,0	INA	INA	INA	INA	0,0
TNRPE	2274,4	39,8	0,1	2314,3	45,1	8,8E-02	INA	INA	INA	INA	-351,9
SM	12,1	0,0	0,0	12,1	0,0	0,0	INA	INA	INA	INA	-4,3
RSF	0,0	0,0	0,0	0,0	0,0	0,0	INA	INA	INA	INA	0,0
NRSF	-11,2	0,0	0,0	-11,2	0,0	4,0E-02	INA	INA	INA	INA	0,0
W	10,1	1,1E-04	2,1E-05	10,1	1,2E-04	0,0	INA	INA	INA	INA	-41,8

RPEE Renewable primary energy resources used as energy carrier (MJ); RPEM Renwable primary energy resources used as raw materials (MJ); TPE Total use of renewable primary energy resources (MJ); NRPE Non renewable primary energy resources used as energy carrier (MJ); NRPM Non renewable primary energy resources used as materials (MJ); TNRPE Total use of non renewable primary energy resources (MJ); SM Use of secondary materials (kg); RSF Use of renewable secondary fuels (MJ); NRSF Use of non renewable secondary fuels (MJ); W Use of net fresh water (m3);

End of life - Waste and Output flow (INA=Indicator Not Accessible)												
Parameter	A1	A2	A3	A1-A3	A4	B1	C1	C2	C3	C1-C3		D
HW	0,3	4,9E-05	5,4E-07	0,3	5,5E-05	5,8E-06	INA	INA	INA	INA		-0,4
NHW	57,0	3,5	1,3E-03	60,5	3,9	7,6E-04	INA	INA	INA	INA		-2,2
RW	0,0	0,0	0,0	0,0	0,0	0,0	INA	INA	INA	INA		0,0
CR	0,0	0,0	0,0	0,0	0,0	0,0	INA	INA	INA	INA		0,0
MR	2,0E-03	0,0	0,0	2,0E-03	0,0	0,0	INA	INA	INA	INA	Ï	0,0
MER	0,0	0,0	0,0	0,0	0,0	0,0	INA	INA	INA	INA		0,0
EEE	0,0	0,0	0,0	0,0	0,0	0,0	INA	INA	INA	INA		0,0
ETE	0,0	0,0	0,0	0,0	0,0	0,0	INA	INA	INA	INA		0,0

HW Hazardous waste disposed (kg); NHW Non hazardous waste disposed (kg); RW Radioactive waste disposed (kg); CR Components for reuse (kg); MR Materials for recycling (kg); MER Materials for energy recovery (kg); EEE Exported electric energy (MJ); ETE Exported thermal energy (MJ);

Specific Norwegian requirements

Electricity

The following data from ecoinvent v3 (June 2012) for Norwegian production mix included import, low voltage is used; Energy/Electricity country mix/Low voltage/Market: Electricity, low voltage {NO}| market for | Alloc Def, U. Production of transmission lines, in addition to direct emissions and loss in grid are included. Characterisation factors stated in EN 15804:2012+A1:2013 are used. This gives following greenhouse gas emissions: 24 g CO2-egv/kWh.

Dangerous Substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (of '17.12.2014) substances on the Norwegian Priority list (published 04.12.2014) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations.

Indoor environment

HÅG SoFi Greenquard certificate

Climate declaration

Not relevant

Bibliography

- [1] NS-EN ISO 14025:2006, Environmental labels and declarations-Type III environmental declarations-Principles and procedures.
- [2] NS-EN ISO 14044:2006, Environmental management Life cycle assessment Requirements and guidelines
- [3] EN 15804:2012 + A1:2013 Sustainability of construction works Environmental product declaration Core rules for the product category of construction products
- [4] PCR for seating solution: PRODUCT-CATEGORY RULES(PCR) for preparing an environmental product declaration (EPD) for Product Group "Seating solution", PCR 2008:NPCR 003, extended version
- [5] Raadal, H. L., Modahl, I. S., Lyng, K. A. (2009). Klimaregnskap for avfallshåndtering, Fase I og II. OR 18.09. ISBN: 978-82-7520-611-2. 82-7520-611-1
- [6] Brekke, A., Møller, H., Baxter, J., Askham, C. (2014). Verktøy miljødeklarasjon for møbel Dokumentasjon som grunnlag for verifisering, Ostfold Research

	Program holder and publisher	Phone: +47 23 08 8GÁIG
epd-norge.no The Norwegian EPD Foundation	The Norwegian EPD Foundation	email: post@epd-norge.no
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	web: <u>www.epd-norge.no</u>
®	Norge	
	Owner of the declaration	Phone: +47 40 41 56 13
SCANDINAVIAN	Scandinavian Business Seating	email: <u>laura.fouilland@sbseating.com</u>
BUSINESS SEATING	Fridtjof Nansens vei 12, 0303 Oslo	web: <u>www.sbseating.com</u>
	Contact person: Laura Fouilland	
	Author of the Life Cycle Assessment	Phone: +47 69 35 11 00
O stfoldforskning	Østfoldforskning AS	email: <u>post@ostfoldforskning.no</u>
U WStroidrorskning	Stadion 4	web: <u>www.ostfoldforskning.no</u>
	1671 Kråkerøy, Norway	

NEPD-335-209-EN HÅG SoFi 6