

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

RH Focus

l:lol:l:

Owner of the declaration: Flokk AS

Product: RH Focus

Declared unit: 1 pcs

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture **Program operator:** The Norwegian EPD Foundation

Declaration number: NEPD-7392-6787-EN

Registration number: NEPD-7392-6787-EN

Issue date: 02.09.2024

Valid to: 02.09.2029

EPD software: LCAno EPD generator ID: 516391

The Norwegian EPD Foundation

l'lol:l:

General information

Product

RH Focus

Program operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-7392-6787-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 026:2022 Part B for Furniture

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs RH Focus

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,B2,B3,B4,C1,C2,C3,C4,D

Functional unit:

1 pcs RH Focus (3135, including packaging.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i integrated into the company's environmental management system, ii the procedures for use of the EPD tool are approved by EPD-Norway, and iii the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required

Owner of the declaration:

Flokk AS Contact person: Atle Thiis-Messel Phone: 0047 98 25 68 30 e-mail: atle.messel@flokk.com

Manufacturer:

Flokk AS Drammensveien 145, 0277 Oslo, Norway

Place of production:

Flokk - Nässjö Vallgatan 1 571 23 Nässjö, Sweden

Management system:

ISO 14001, ISO 9001, ISO 50001(Norway, Sweden)

Organisation no:

No 928 902 749

Issue date:

02.09.2024

Valid to:

02.09.2029

Year of study:

2024

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Kenneth Dam Lindegaard Knudsen

Reviewer of company-specific input data and EPD: Edward Buzura

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Product

Product description:

The RH Focus is specifically designed for environments where monitoring, surveillance, and computer work converge, such as police incident rooms, emergency service centers, and air or traffic control stations. Built for durability and comfort, the RH Focus offers robust support with easy adjustments, ensuring dynamic sitting for any user, regardless of the time spent in the chair.

Key to its comfort is the extra-thick, ergonomically shaped seat and backrest, which feature both inner and outer cushions, providing exceptional comfort during long hours of use. The chair's tilting mechanism promotes dynamic seating by allowing the seat to follow your sitting position, while the backrest automatically adapts to each user, thanks to its movable center section. This ensures that the backrest provides personalized support, enhancing comfort and reducing strain.

All controls on the RH Focus are easily accessible and adjustable from both sides of the chair, allowing users to customize the chair to their individual needs. Additionally, the RH Focus can be fitted with various optional extras to further tailor the seating experience to specific requirements.

Product specification

The model studied in this declaration is the RH Focus (3135), including packaging. The model declared does not include any options such as armrests.

The key environmental indicators for the other models of the family, and applicable options of the product collection are presented in a table on page 12 of this declaration.

Materials	kg	%	Recycled share in material (kg)	Recycled share in material (%)
Plastic - Polypropylene (PP)	1,83	7,32	1,47	80,18
Plastic - Polyethylene (LDPE)	0,02	0,07	0,00	0,00
Plastic - Polyethylene (HDPE)	0,10	0,39	0,00	0,00
Leather	2,34	9,32	0,00	0,00
Plastic - Polyamide	0,37	1,46	0,00	0,00
Metal - Steel	9,75	38,90	0,16	1,65
Rubber, synthetic	0,31	1,24	0,00	0,00
Textile - Polyester (PE)	0,04	0,16	0,00	0,00
Plastic - Polyurethane (PUR)	2,14	8,52	0,00	0,00
Reinforcement	0,01	0,03	0,00	0,00
Others	0,02	0,08	0,00	1,24
Wood - Plywood	2,64	10,52	0,00	0,00
Powder coating	0,02	0,09	0,00	0,00
Plastic - Acrylonitrile butadiene styrene (ABS)	0,03	0,13	0,00	0,00
Plastic - Nylon (PA)	0,65	2,60	0,00	0,00
Plastic - Polyoxymethylene (POM)	0,17	0,70	0,00	0,00
Metal - Aluminium	4,63	18,47	4,60	99,41
Total	25,06	100,00	6,23	
Packaging	ka	%	Recycled share in	Recycled share in

Packaging	kg	%	Recycled share in material (kg)	share in material (%)
Recycled cardboard	6,44	85,04	6,44	100,00
Packaging - Paper	0,00	0,01	0,00	34,31
Packaging - Cardboard	1,09	14,36	0,00	0,00
Packaging - Plastic	0,04	0,59	0,00	0,00
Total incl. packaging	32,63	100,00	12,68	

Technical data:

Market:

Worldwide.

A4 stage transportation from factory to market, is assumed to be 1.000 km. See table on page 6 for further detail.

Reference service life, product

15 years

Reference service life, building

LCA: Calculation rules

Declared unit:

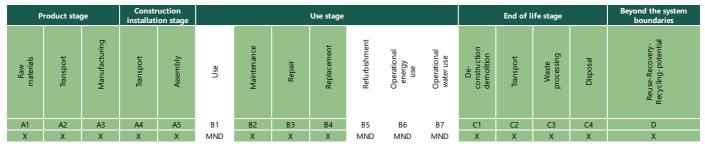
1 pcs RH Focus

Cut-off criteria:

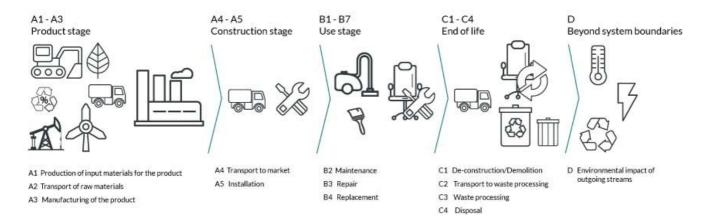
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.


Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Leather	Modified ecoinvent 3.6	Database	2019
Metal - Aluminium	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Metal - Steel	SSAB	EPD (EN15804A1) + company dataset (EN15804A2)	2020
Others	ecoinvent 3.6	Database	2019
Packaging - Cardboard	Modified ecoinvent 3.6	Database	2019
Packaging - Paper	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Plastic - Acrylonitrile butadiene styrene (ABS)	ecoinvent 3.6	Database	2019
Plastic - Nylon (PA)	ecoinvent 3.6	Database	2019
Plastic - Polyamide	Modified ecoinvent 3.6	Database	2019
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019
Plastic - Polyethylene (LDPE)	ecoinvent 3.6	Database	2019
Plastic - Polyoxymethylene (POM)	ecoinvent 3.6	Database	2019
Plastic - Polypropylene (PP)	ecoinvent 3.6	Database	2019
Plastic - Polypropylene (PP)	Modified ecoinvent 3.6	Database	2019
Plastic - Polyurethane (PUR)	ecoinvent 3.6	Database	2019
Powder coating	Ecoinvent 3.6	Database	2019
Recycled cardboard	Modified ecoinvent 3.6	Database	2019
Reinforcement	ecoinvent 3.6	Database	2019
Rubber, synthetic	ecoinvent 3.6	Database	2019
Textile - Polyester (PE)	ecoinvent 3.6	Database	2019
Wood - Plywood	modified ecoinvent 3.6	Database	2019

|**:**|o|:|:

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	1000	0,023	l/tkm	23,00
Assembly (A5)	Unit	Value			
Waste, packaging, cardboard, 100 % recycled, to average treatment (kg)	kg	6,44			
Waste, packaging, corrugated board box, 0 % recycled, to average treatment (kg)	kg	1,09			
Waste, packaging, paper printed, to average treatment (kg)	kg	0,00			
Waste, packaging, plastic film (LDPE), to average treatment - A5 (kg)	kg	0,04			
Maintenance (B2)	Unit	Value			
Electricity, Nordic (kWh)	kWh/DU	0,81			
Water, tap water (m3)	m3/DU	11,70			
Repair (B3)	Unit	Value			
Electricity, Nordic (kWh)	kWh/DU	0,55			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	100	0,043	l/tkm	4,30
Waste processing (C3)	Unit	Value			
Waste treatment per kg Non-hazardous waste, incineration with fly ash extraction - C3 (kg)	kg	2,87			
Waste treatment per kg Plastics, Mixture, municipal incineration with fly ash extraction (kg)	kg	0,18			
Waste treatment per kg Polyethylene, PE, incineration with fly ash extraction - C3 (kg)	kg	0,11			
Waste treatment per kg Polyoxymethylene (POM), incineration with fly ash extraction (kg) - CH - C3	kg	0,17			
Waste treatment per kg Polypropylene (PP), incineration with fly ash extraction - C3 (kg)	kg	1,83			
Waste treatment per kg Polyurethane (PU), incineration (kg)	kg	2,14			
Waste treatment per kg Rubber, municipal incineration with fly ash extraction (kg)	kg	0,31			
Waste treatment per kg Scrap aluminium, incineration with fly ash extraction (kg)	kg	4,63			
Waste treatment per kg Scrap steel, incineration with fly ash extraction (kg)	kg	9,75			
Waste treatment per kg Textile, incineration with fly ash extraction (kg)	kg	0,41			
Waste treatment per kg Wood, incineration with fly ash extraction (kg)	kg	2,64			
	kg	3.79			

|**:**|o|:|:

Disposal (C4)	Unit	Value		
Landfilling of ashes and residues from incineration of Scrap aluminium (kg)	kg	4,15		
Landfilling of ashes and residues from incineration of Scrap steel (kg)	kg	6,44		
Landfilling of ashes from incineration of Non- hazardous waste, process per kg ashes and residues - C4 (kg)	kg	0,68		
Landfilling of ashes from incineration of Plastics, Mixture, municipal incineration with fly ash extraction, process per kg ashes and residues - C4 (kg)	kg	0,01		
Landfilling of ashes from incineration of Polyethylene, PE, process per kg ashes and residues - C4 (kg)	kg	0,00		
Landfilling of ashes from incineration of Polyoxymethylene (POM), process per kg ashes and residues (kg) - CH - C4	kg	0,00		
Landfilling of ashes from incineration of Polypropylene, PP, process per kg ashes and residues - C4 (kg)	kg	0,05		
Landfilling of ashes from incineration of Polyurethane (PU), process per kg ashes and residues - C4 (kg)	kg	0,08		
Landfilling of ashes from incineration of Rubber, process per kg ashes and residues - C4 (kg)	kg	0,02		
Landfilling of ashes from incineration of Textile, soiled, process per kg ashes and residues (kg)	kg	0,02		
Landfilling of ashes from incineration of Wood, process per kg ashes and residues (kg)	kg	0,03		

Benefits and loads beyond the system boundaries (D)	Unit	Value		
Substitution of electricity, in Norway (MJ)	MJ	11,00		
Substitution of primary aluminium with net scrap (kg)	kg	0,00		
Substitution of primary steel with net scrap (kg)	kg	3,12		
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	166,42		

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environme	ntal impact							
	Indicator	Unit		A1-A3	A4	A5	B2	B3
P	GWP-total	kg CO ₂ -	eq	9,13E+01	2,84E+00	1,29E+01	4,16E+00	8,01E-02
P	GWP-fossil	kg CO ₂ -	kg CO ₂ -eq		2,84E+00	1,25E-01	4,12E+00	7,47E-02
P	GWP-biogenic	kg CO ₂ -	eq	1,43E+00	1,22E-03	1,28E+01	2,72E-02	1,36E-03
P	GWP-luluc	kg CO ₂ -	eq	1,59E+00	8,66E-04	4,06E-05	1,26E-02	4,09E-03
Ò	ODP	kg CFC11	-eq	5,79E-06	6,85E-07	2,59E-08	3,67E-07	8,08E-09
Ê	AP	mol H+ -	eq	5,93E-01	9,15E-03	5,81E-04	2,39E-02	3,44E-04
	EP-FreshWater	kg P -eo	1	6,19E-03	2,26E-05	1,01E-06	3,28E-04	4,94E-06
	EP-Marine	kg N -ee	7	2,37E-01	2,00E-03	1,95E-04	3,79E-03	5,44E-05
	EP-Terrestial	mol N -e	p	1,69E+00	2,24E-02	2,08E-03	4,43E-02	7,31E-04
	РОСР	kg NMVOC	-eq	3,30E-01	8,78E-03	5,99E-04	1,38E-02	1,71E-04
e de la	ADP-minerals&metals ¹	kg Sb-e	7	2,01E-02	5,07E-05	2,98E-06	1,14E-04	1,16E-06
B	ADP-fossil ¹	MJ		1,15E+03	4,62E+01	1,72E+00	7,15E+01	2,02E+00
%	WDP ¹	m ³		8,58E+03	3,54E+01	2,21E+00	1,46E+03	1,56E+02
	Indicator	Unit	B4	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ -eq	0	0	5,34E-01	2,43E+01	1,29E-01	-4,46E+00
P	GWP-fossil	kg CO ₂ -eq	0	0	5,33E-01	1,94E+01	1,29E-01	-4,43E+00
P	GWP-biogenic	kg CO ₂ -eq	0	0	2,21E-04	4,99E+00	9,57E-05	-4,00E-03
P	GWP-luluc	kg CO ₂ -eq	0	0	1,90E-04	1,82E-04	3,76E-05	-3,53E-02
Ò	ODP	kg CFC11 -eq	0	0	1,21E-07	9,02E-08	3,81E-08	-7,03E-02
Ê	AP	mol H+ -eq	0	0	1,53E-03	8,09E-03	8,80E-04	-2,52E-02
	EP-FreshWater		0	0	4,26E-06	9,57E-06	1,31E-06	-2,98E-04
	EP-Freshwater	kg P -eq	0	0	4,202-00	5,572 00	1,512-00	
	EP-Marine	kg P -eq kg N -eq	0	0	3,03E-04	4,13E-03	3,12E-04	-6,15E-03
æ	EP-Marine	kg N -eq	0	0	3,03E-04	4,13E-03	3,12E-04	-6,15E-03
	EP-Marine EP-Terrestial	kg N -eq mol N -eq	0 0	0 0	3,03E-04 3,39E-03	4,13E-03 4,08E-02	3,12E-04 3,46E-03	-6,15E-03 -6,45E-02
<i>♣</i>	EP-Marine EP-Terrestial POCP	kg N -eq mol N -eq kg NMVOC -eq	0 0 0	0 0 0	3,03E-04 3,39E-03 1,30E-03	4,13E-03 4,08E-02 9,86E-03	3,12E-04 3,46E-03 9,95E-04	-6,15E-03 -6,45E-02 -2,50E-02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

Additional environmental impact indicators								
	Indicator	Unit		A1-A3	A4	A5	B2	B3
	PM	Disease incidence		7,30E-06	2,61E-07	8,59E-09	1,99E-07	1,83E-09
()~() B	IRP ²	kgBq U235 -eq		2,86E+00	2,02E-01	7,36E-03	5,42E-01	4,60E-02
	ETP-fw ¹	CTUe		4,33E+03	3,38E+01	2,29E+00	7,79E+01	2,53E+00
464 * ****	HTP-c ¹	CTUh		4,37E-07	0,00E+00	6,80E-11	1,12E-08	5,90E-11
4 <u>8</u>	HTP-nc ¹	CTUh		2,82E-05	3,26E-08	2,87E-09	2,49E-07	1,55E-09
è	SQP ¹	dimensionless	dimensionless		5,29E+01	1,17E+00	2,14E+01	1,52E+00
h	ndicator	Unit	Unit B4		C2	C3	C4	D
	PM	Disease incidence	0	0	3,26E-08	5,42E-08	1,59E-08	-7,69E-07
	IRP ²	kgBq U235 -eq	0	0	3,52E-02	1,16E-02	1,14E-02	-7,72E-02
	ETP-fw ¹	CTUe	0	0	5,98E+00	6,36E+01	1,79E+00	-2,67E+02
44.* ****	HTP-c ¹	CTUh	0	0	0,00E+00	1,71E-09	6,30E-11	-1,80E-08
48° <u>B</u>	HTP-nc ¹	CTUh	0	0	6,53E-09	4,30E-08	1,87E-09	2,87E-07
	SQP ¹	dimensionless	0	0	5,64E+00	7,71E-01	6,17E+00	-9,44E+01

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

*INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use								
	Indicator		Unit	A1-A3	A4	A5	B2	B3
i. D	PERE		MJ	3,58E+02	5,81E-01	2,84E-02	1,22E+01	1,98E+00
æ	PERM		MJ	9,19E+01	0,00E+00	-5,50E+01	0,00E+00	0,00E+00
° ≓ s	PERT		MJ	4,50E+02	5,81E-01	-5,50E+01	1,22E+01	1,98E+00
A	PENRE		MJ	1,03E+03	4,62E+01	1,72E+00	7,16E+01	2,05E+00
Å	PENRM		MJ	1,79E+02	0,00E+00	-1,90E+00	0,00E+00	0,00E+00
IA	PENRT		MJ	1,20E+03	4,62E+01	-1,79E-01	7,16E+01	2,05E+00
	SM		kg	1,27E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
1	RSF		MJ	1,01E+00	2,03E-02	9,40E-04	7,76E-01	2,00E-02
Ū.	NRSF		MJ		6,81E-02	3,86E-03	7,36E-01	0,00E+00
۲	FW		m ³		5,25E-03	8,12E-04	1,18E+01	9,03E-03
	ndicator	Unit	B4	C1	C2	C3	C4	D
i de la companya de l	PERE	MJ	0	0	1,15E-01	2,39E-01	5,56E-02	-8,77E+01
E.	PERM	MJ	0	0	0,00E+00	-3,69E+01	0,00E+00	0,00E+00
×.	PERT	MJ	0	0	1,15E-01	-3,67E+01	5,56E-02	-8,77E+01
B	PENRE	MJ	0	0	8,06E+00	5,36E+00	2,83E+00	-4,30E+01
Å	PENRM	MJ	0	0	0,00E+00	-1,77E+02	0,00E+00	0,00E+00
IA	PENRT	MJ	0	0	8,06E+00	-1,71E+02	2,83E+00	-4,30E+01
	SM	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
E	RSF	MJ	0	0	4,13E-03	5,74E-03	1,47E-03	1,09E-01
	NRSF	MJ	0	0	1,48E-02	0,00E+00	8,10E-02	-1,44E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources; SM = Use of secondary materials; PERT = Total use of non renewable primary energy resources; SM = Use of secondary materials; REF = Use of renewable primary energy resources; SM = Use of secondary fuels; REF = Use of renewable primary energy resources; SM = Use of secondary fuels; REF = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary fuels; REF = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary fuels; REF = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary fuels; REF = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary fuels; REF = Use of renewable primary energy resources; SM = Use of non-renewable primary energy resources; SM = Use of secondary fuels; REF = Use of non-renewable primary energy resources; SM = Use of non-renewable primary energy ener

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste	nd of life - Waste								
	Indicator		Unit		A1-A3	A4	A5	B2	B3
Â	HWD	kg		9,42E-01	2,53E-03	0,00E+00	1,32E-02	1,89E-04	
Ū	NHWD		k	g	1,92E+01	4,01E+00	7,58E+00	8,51E-01	1,25E-02
æ	RWD		kg		2,94E-03	3,15E-04	0,00E+00	4,33E-04	2,11E-05
In	Indicator		Unit	B4	C1	C2	C3	C4	D
à	HWD		kg	0	0	4,16E-04	0,00E+00	1,13E+01	-1,84E-02
Ū	NHWD		kg	0	0	3,92E-01	2,87E+00	2,70E-01	-1,74E+00
8	RWD		kg	0	0	5,49E-05	0,00E+00	1,82E-05	-6,41E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow	nd of life - Output flow							
Indi	cator	U	nit	A1-A3	A4	A5	B2	B3
Ô	CRU	k	g	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
\$\$	MFR	kg		5,32E-01	0,00E+00	7,03E+00	0,00E+00	0,00E+00
DFZ	MER	k	g	4,25E-01	0,00E+00	8,24E-05	0,00E+00	0,00E+00
70	EEE	Ν	MJ		0,00E+00	4,31E-01	0,00E+00	0,00E+00
DØ	EET	Ν	MJ		0,00E+00	6,52E+00	0,00E+00	0,00E+00
Indicato	r	Unit	B4	C1	C2	C3	C4	D
$\langle \phi \rangle$	CRU	kg	0	0	0,00E+00	0,00E+00	0,00E+00	0,00E+00
31	MFR	kg	0	0	0,00E+00	3,79E+00	0,00E+00	0,00E+00
DF	MER	kg	0	0	0,00E+00	2,50E+01	0,00E+00	0,00E+00
50	EEE	MJ	0	0	0,00E+00	9,64E+00	0,00E+00	0,00E+00
DI	EET	MJ	0	0	0,00E+00	1,46E+02	0,00E+00	0,00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content

Indicator	Unit	At the factory gate					
Biogenic carbon content in product	kg C	1,20E+00					
Biogenic carbon content in accompanying packaging	kg C	3,49E+00					

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, high voltage, hydro (kWh) - SE	ecoinvent 3.6	4,02	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Key Environmental Indicators

Key environmental indicators	Unit	A1-A3	A4	A1-C4	A1-D
GWPtotal	kg CO ₂ -eq	91,26	2,84	136,26	131,80
Total energy consumption	MJ	1390,85	46,85	1545,62	1413,59
Amount of recycled materials	%	38,84			

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator	Unit	Unit		A4	A5	B2	B3
GWPIOBC	kg CO ₂ -eq	kg CO ₂ -eq		2,84E+00	1,25E-01	4,20E+00	1,09E-01
Indicator	Unit	B4	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	0	0	5,34E-01	1,69E+01	1,37E-01	-6,16E+00

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Variants and Options

Key environmental indicators (A1-A3) for variants of this EPD					
Variants	Weight (kg)	GWPtotal (kg CO ₂ -eq)	Total energy consumption (MJ)	Amount of recycled materials (%)	
RH Focus (3135) - Upholstered seat/back (Staccato/Guildford of Maine + Elmosoft/Elmo) - Mechanism type F - No Packaging	25,06	96,75	1182,24	24,87	

Key environmental indicators (A1-A3) for options for this EPD						
Options	Weight (kg)	GWPtotal (kg CO ₂ - eq)	Total energy consumption (MJ)	Amount of recycled materials (%)		
Headrest RH Focus - Upholstered (Staccato/Duvaltext-Guildford of Maine)	1,52	16,79	188,08	0,00		
Armrests 8K	2,69	12,56	168,34	9,77		
Armrests 8K XL - Leather top (Elmosoft/Elmo)	3,92	21,95	247,03	6,71		
Armrests 8H	3,76	14,50	218,10	0,01		
Armrests 8H - Leather top (Elmosoft/Elmo)	4,78	23,80	306,93	0,01		
Armrests 8F	2,54	9,96	160,33	0,00		
Armrests 8F - Leather top (Elmosoft/Elmo)	3,16	18, 10	210,88	0,00		
Packaging 1 (Large box, fully assembled - Used in declared unit)	7,58	-5,49	208,61	85,04		

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products. ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Ruud et al., (2023) EPD generator for NPCR026 Part B for Furniture - Background information for EPD generator application and LCA data, LCA.no report number 01.23

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge. NPCR 026 Part B for Furniture. Ver. 2.0 March 2022, EPD-Norge.

and norge	Program operator and publisher	Phone: +47 977 22 020
🕲 epd-norge	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
	Owner of the declaration:	Phone: 0047 98 25 68 30
Flokk	Flokk AS	e-mail: atle.messel@flokk.com
	Drammensveien 145,, 0277 Oslo	web: https://www.flokk.com
\bigcirc	Author of the Life Cycle Assessment	Phone: +47 916 50 916
(LCA)	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
\bigcirc	Developer of EPD generator	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
	ECO Portal	web: ECO Portal
VERIFIED		